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What is raking?

Two categorical variables X, and X, taking I and
margins g J possible values.

ED:I:'. When summing the rows and columns of the
X, = County table y, the observations y,; do not add up to the
values in the margins s; and s,.

I
margins s; Zyij + sy, Jj= 1,0
i=1
J
—— X; = Population group Zyij *+sy, i=1,,1
j=1
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What is raking?

After raking, the raked values B;; in the updated
table 5 sum correctly to the values in the margins
margins sg sy ands,.
[ T -
Bij=s1; J=1-,J

i=1
X5 = County

<

Bij =89 t=1,,1

—

<

margins s;

Note: For the problem to have a solution, we need
the margins to be consistent:

J I
E S15 = E S24
=1 i=1
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——  X; = Population group




Global health example

* The observation table may be the number of obesity cases for each population group ¢ and
each county j. The margins are the number of obesity cases for the entire population for each
county j and the number of cases for each population group i for the entire state.

* Forsome reason (e.g. errors in data collection, the table is the output of a model that does not

include the constraints on the margins), the partial sums on the observations do not match the
margins.

* We trust more the margins than the observations.
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Raking as an optimization problem

y € RP is the vectorized observation table.

s € R¥ are the known margins, i.e. the known partial sums on the table.

A € RF*P summarizes how to compute the partial sums.

£ € RP are the unknown raked values.

w € RP are raking weights chosen by the user.

f* is aseparable, derivable, positive, strictly convex function chosen by the user.

p T
: w (3. _ ; w (3. _ _ IJ® j]‘I
ggg;f (Biy) st AB=s with fv(By) = ;:1 w; f; (B;,y;) andeg. A= <1§®1}>

Note: We need to ensure that all the constraints are consistent and we trim the redundant
constraints such that rank (A € R®?) =k < p.

Q) HME




Dual formulation

P: min f*(B,y) st Af=s
BeRP

Lo f(B,y) + AT (AB—s)

D: min for (—ATXN) + ATs
AeRF

As k < p, we decrease the dimension of the problem by using the dual formulation instead of the
primal formulation.

We solve the dual problem using Newton’s method.
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Common distance functions

Note

Solved in 1 iteration.

B =yoexp(—y ©ATX)

The raked values have
the same sign as
the initial observations.

Distance f; (83 v;)
x> % (B; — yi)2
Entropic Bilog (2:) -8, +y,
Logit (B; —1,)1og 22 + (h, — B;) log 122

B* — LO(h—y)+hO(y—1)

The raked values stay
between [, and h;

when we rake
prevalence observations.
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Prior ordinal constraints

We are given observations and margins
for n different years — We can solve n
independent raking problems:

min f*(8;,y,) st A8 =5

B, eRP

mln f (Bnayn) S't Anﬁn =

B,ERP

l:\:\:‘:- margins so (year 1)
l:\:\:‘:- margins so (year 2)
X5 = County l:\:\:‘:- margins so (year 3)

margins s (year 1)

margins s1 (year 2)
margins s1 (year 3)

—— X = Population group
observations y (year 1)

observations y (year 2)

observations y (year 3)
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Prior ordinal constraints

We want the raking process to preserve the sign
of the trend observed between year 1 and year 2,
year 2 and year 3, and so on and so forth until year
n.

(n — 1) p additional constraints must then be
added:

(51,1: - 52,1:) (?Ju - 112,7:) >0 Vi=1,-,p

(ﬁnfl,i - Bn,i) (ynfl,i - yn,i) >0 Vi=1,-,p
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The raking problem becomes:

min [ (81, y1) + -+ f* (B Yn)

15" FPn

s.t.

A By = sq,

An/Bn = S’n?
— (B = B2) O (y; —yy) <0

- (ﬂnfl - 571) ©] (ynfl - yn) < 0




Prior ordinal constraints

We end up with a minimization problem with the same form as before:

Inequality constraints Penalty
AB=s, in f L(e—C st A=
min f* (3,y) st & Inin f (B,y)+L (c — CB,a) B—s
BER™P CB<c

« is a penalty parameter and L can be the
The feasible set may be empty. logistic loss:

L8t () = ilog (1 +exp(—w;))

’L
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Variance propagation

Given:
° X, € RP*P, the covariance matrix of the observations vector y,
e 3, € R¥** the covariance matrix of the margins vector s and
* %, € RP** the covariance matrix of y and s,

find:
® X4 € RP*P, the covariance matrix of the estimated raked values 3*.
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Variance propagation

The primal problem:

minmax f* (6,y) + L (¢ — OB, o) + AT (45 — 5)

can also be written:

Vsl (B,y) = CTV,L(c—CBa) + ATA| _

F(B,Xy,s) = Af— s

and has solution:

B = ¢ (y,s) with ¢ : RPTF — RP

0
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Variance propagation

We get:

with:

and:
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s (y8) = (

op"
dy

ap*

Js

S

= ¢ (y,5) Xo,L (y, 5)
(y, ) ay (:9)
(. s) 3";; (Y. s)

(Y, )
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Variance propagation

Implicit Function Theorem: When differentiating the primal problem F'(y, s; ¢ (y, s)) = 0 at the
solution (5%, A*), we get:

[Dﬁ,/\F(yvs;ﬂ*vA*ﬂ [Dy,s¢(y>5)] + [Dy,sF(yvs;ﬂ*:)\*)] =0

Knowing D , Fand D, ;¢, we can compute:

o 9B"

) aB* a3*

D, b= (5’3 a;) and ¢, (v,9) = (% %)
oy Os

We have:

2 rw * T - « T
DﬁAF_(Vaf (B 9) + CTV 2 L(c—CB"a)C A )
’ A kak
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Variance propagation

We denote:

A* b ZAljk‘b

We get:

D, .F = (v%yfw (8%9) — [V,CT] VoL (c — CB",

for

A € Rmxnxp

v, AL, =

kap

) +

B eR”

aAij ()

oy,

and Axbe R™*P

CTV2L (c— OB, a) [V,C * ]

0

pxk

7Ik><k
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Results

Females, age 35-40, population group AIAN, county 534 (Hawaii)
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Results

Females, age 35-40, population group API, county 532 (Hawaii), year 2011
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Questions?

PyPI: https://pypi.org/project/raking/
GitHub: https://github.com/ihmeuw-msca/raking
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