© Copyright 2021

Ariane Ducellier



Statistical analysis of low-frequency earthquake catalogs

Ariane Ducellier

A thesis
submitted in partial fulfillment of the

requirements for the degree of

Master of Science

University of Washington

2021

Committee:
Donald B. Percival, Chair
Yen-Chi Chen

Thomas S. Richardson

Program Authorized to Offer Degree:

Statistics



University of Washington

Abstract

Statistical analysis of low-frequency earthquake catalogs

Ariane Ducellier

Chair of the Supervisory Committee:
Professor Donald B. Percival
Department of Statistics

Low-frequency earthquakes (LFEs) are small magnitude (less than 2) earthquakes, with reduced
amplitudes at frequencies greater than 10 Hz relative to ordinary small earthquakes. They are
usually grouped into families of events, with all the earthquakes of a given family originating
from the same small patch on the plate interface and recurring more or less episodically in a
bursty manner. In this thesis, I analyze catalogs of events from several LFE families located in
Cascadia, Mexico, and the San Andreas Fault. First, for each given family of LFEs, I translate
the catalog into a continuous time series defined by the number of events per unit of time. Long-
range dependence is a phenomenon that may arise in the statistical analysis of time series data. It
relates to the slow rate of decay of the statistical dependence between two points with increasing

time interval between the points. I look for evidence of long-range dependence in the time series



by analyzing them with several graphical methods. Second, I consider all the LFEs associated
with a single family as a point process (a marked point process if magnitude is available). I then
model this point process with an Epidemic-Type Aftershock Sequence (ETAS) model and fit the
parameters of the model for each LFE family. Finally, I generate synthetic ETAS models using
the fitted parameters, in order to verify whether this type of models can produce apparent long-
range dependence as observed in the first part of this thesis. The statistical characterization of
LFE occurrence could provide important constraints on future mechanical models of LFE

generation.
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Chapter 1

Introduction

Low-frequency earthquakes (LFEs) are small magnitude earthquakes, with typical
magnitude less than 2, and reduced amplitudes at frequencies greater than 10 Hz
relative to ordinary small earthquakes. Their occurrence is often associated with tec-
tonic tremor and slow slip events along the plate boundary in subduction zones and
occasionally transform fault zones. They are usually grouped into families of events,
with all the earthquakes of a given family originating from the same small patch on
the plate interface, and recurring more or less episodically in a bursty manner.

LFE datasets from the Olympic Peninsula (Washington), Northern California,
Mexico, and the San Andreas Fault are available. Each dataset contains the geo-
graphic locations of the LFE families, and, for each family, the timing (and some-
times the magnitude) of each of the LFE events. Each LFE family is thus associated
with a catalog of earthquake events. In this thesis, I will analyze each LFE catalog
independently from the others, and I am not interested in the possible correlation
between two catalogs associated with two different LFE families.

There are two ways to make a statistical analysis of these catalogs:

e First, we can consider all the LFEs associated with a single family as a point
process (a marked point process if magnitude is available).

e Second, for each family of LFEs, it is possible to translate the catalog into a
discrete time series defined by the number of events per unit of time.

In the second chapter of this thesis, I consider each LFE catalog as a time series,
and I study evidence of long-range dependence in these time series.

In the third chapter, I consider each LFE catalog as a point process, and I try to
fit an Epidemic Type Aftershock Sequence (ETAS) model on them.

In the fourth chapter, I generate synthetic catalogs using the ETAS models fitted
in the third chapter, and look for evidence of long-range dependence in the resulting
synthetic time series.






Chapter 2

Long-range dependence in
low-frequency earthquake catalogs

Long-range dependence is a phenomenon that may arise in the statistical analysis
of time series data. It relates to the slow rate of decay of the statistical dependence
between two points with increasing time interval between the points. Evidence of
long-range dependence has been found in regional earthquake catalogs (Telesca et
al., 2000; Li, Chen, and Mi, 2002; Telesca, Lapenna, and Macchiato, 2004; Enescu, Ito,
and Struzik, 2006; Jiménez et al., 2006; Xu and Burton, 2006; Bunde and Lennartz,
2012; Wang, 2013; Gkarlaouni et al., 2017; Barani et al., 2018; Matcharashvili et al.,
2018; Mukhopadhyay and Sengupta, 2018), global earthquake catalogs (Ogata and
Abe, 1991; Sarlis et al., 2018), and in catalogs of mining-induced seismicity (Weglar-
czyk and Lasocki, 2009). We can investigate whether there is long-range dependence
in a catalog by computing the fractional differencing parameter d, which represents
how fast the variance in the number of LFEs in a time window of a given length
increases with the length of the time window considered. A fractional differencing
parameter such that 0 < d < 0.5 is characteristic of long-range dependence in the
time series, whereas an homogeneous Poisson process has a fractional differencing
parameter equal to 0.

Some evidence of long-range dependence has been found in low-frequency earth-
quake catalogs. For instance, Frank et al. (2016) carried out a statistical analysis of
a catalog of low-frequency earthquakes recorded between January 2005 and April
2007 in the Guerrero, Mexico, subduction zone. They computed the autocorrelation
sequence and the spectral density function of the low-frequency earthquake rate for
two 4-month-long windows, one corresponding to an inter-slow slip period, and
one corresponding to the 2006 slow slip event. They observed that low-frequency
earthquakes behave as an homogeneous Poisson’s process during the inter-slow slip
period, and as a process with long-range dependence during the co-slow slip period.

In the first section of this chapter, I explain in more detail what long-range de-
pendence is. In the second section, I describe several methods to compute the frac-
tional differencing parameter d of a time series with long-range dependence. In the
third section, I apply these methods to synthetic time series. In the fourth section,
I describe the low-frequency earthquake catalogs to which I will apply the method.
Finally, in the last section, I present the results of the analysis.
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2.1 Long-range dependence

A time series is any sequence of observations associated with an ordered indepen-
dent variable t. For the analyses carried out in this thesis, I assume that the time
series is defined essentially over a range of integers (usually t = 1, ..., N, where N
denotes the number of values in the time series).

A real-valued random variable is a function, or mapping, from the sample space
of possible outcomes of a random experiment to the real line.

A discrete parameter real-valued stochastic process {X; : t = .., —1,0,1,..} is a
sequence of random variables indexed over the integers. A process such as {X;}
can serve as a stochastic model for a sequence of observations of some physical phe-
nomenon. We assume that these observations are recorded at a sampling interval of
At.

The process { X;} is said to be (second order) stationary if:
1. E{X;} = ux for all integers t (i.e. ux does not depend on ¢).

2. cov{X;, Xi41} = sxr for all integers t and 7 (i.e. sx depends only on T and
does not depend on t).

The sequence {sx : T = ..., —1,0,1, ...} is called the autocovariance sequence (ACVS)
of the stochastic process. The autocorrelation sequence (ACS) is px + = sx,¢/5x,0-

The spectral density Sx (f) is related to the ACVS sx 1 by the relationship:
fa o FTAL 1 . .
SX,v = / Sx (f) &2 4 f where fr = 7A7 18 the Nyquist frequency.  (2.1)
v

Long-range dependence can then be defined by imposing conditions on the au-
tocorrelation px  or on the spectral density S (f) (Beran, 1994).

Condition on the autocorrelation X; is called a process with long-range depen-
dence if there exists a real number ¢ € (0,1) and a constant ¢, such that:

. oxXt
lim et 1 (2.2)

Condition on the spectral density X; is called a process with long-range depen-
dence if there exists a real number ¢ € (0,1) and a constant cg such that:

Sx(f) _
I @

2.2 Methods to measure long-range dependence

In this thesis, I use several different graphic methods to compute either the fractional
differencing parameter d, or the Hurst parameter. For finite variance processes, the
fractional differencing parameter d and the Hurst parameter H are related by:
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H:d+% (2.4)

For infinite variance processes, the fractional differencing parameter 4 and the
Hurst parameter H are related by:

1
H=d++ (2.5)

where A is a parameter of the distribution of the innovations of a FARIMA process
(e.g. the shape of the Pareto distribution, or the stability parameter of the A-stable
distribution). The graphical methods to compute d or H methods are described in
Taqqu and Teverovsky (1998). Here is a brief summary of the methods.

Let us define a time series X;, of length N. We define the corresponding aggre-
gated series:

1k N
XMy == Y .anrkzszp”,[} (2.6)
m . m
i=(k—1)m+1
The first absolute moment of the time series is then:
N
(m) — "N | x(m) () X
AM Ng&x (k) X‘ 2.7)

and AM("™) behaves as m"~1. If we make a log-log plot of the absolute moment
AM(™) versus the length m of the aggregation window, the result should be a straight
line of slope H — 1.

The sample variance of the time series is:

m

Varx(m = (X (k) — X) ’ (2.8)

m
N3

and VarX(™ behaves as m2~1. If we make a log-log plot of the sample variance
VarX(™ versus the length m of the aggregation window, the result should be a

straight line of slope 2d — 1.

To define the variance of residuals, we divide the time series into blocks of size
m. We then compute the partial sums of the time series Y (t) = Y!_; X;, and fit the
partial sums within each block by a least-squares line a + bt. The sample variance of
the residuals L Y/"; (Y () —a — bt)* is then computed. Its median over the blocks
is proportional to m?H and its average over the blocks is proportional to m?*1. In
the case of the low-frequency earthquake time series, it is better to use the average
rather than the median, because the median may often be equal to 0 as there are long
periods of time without any earthquake events. However, this may not work very
well in the case of infinite variance series. If we make a log-log plot of the average
of variance of residuals versus the length m of the aggregation window, the result
should be a straight line of slope 2d + 1.

For the R/S method, the original time series is divided into K blocks. Then we
define the partial sum of the time series for the block j by:
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kj+f N
Y, (£) = kz X; with k; = j and j = 0, , K — 1 (2.9)
i= ]‘+1

We then define for each lag n:

R (j,n) = max | (t) - "1y, (n)} — min [Yj () — %Y].(n) (2.10)

1<t<n n 1<t<n

and S (j, n) is the square root of the sample variance of X (t),t = k; +1,--- ,k; +n.

The R/ S statistic is defined by: R/S = 152((]]2)) and behaves as nit+s

The periodogram is defined as:

2

1
I(f) = 2N where f is the frequency (2.11)

N ..
Y Xjel!
j=1

and I (f) behaves as |f ]72‘1 close to the origin for small f. If we make a log-log plot
of the periodogram I (f) versus the frequency f, the result should be a straight line
of slope —24.

2.3 Tests on synthetic data

To verify how well these methods compute the fractional differencing parameter d
or the Hurst parameter H, I generated synthetic time series with long-range depen-
dence using the same parameters as in Taqqu and Teverovsky (1998) and using the
R package fracdiff. All the time series are Fractional Autoregressive Integrated Mov-
ing Average (FARIMA) with parameters (p, d, g) where the ARMA part is described

by:
Xp =1 Xy 1 — - —ppXp—p = — 01801 — - —Oge1 (2.12)

where the ¢; are the innovations. As in Taqqu and Teverovsky (1998), there are ten
types of time series:

1. Gaussian FARIMA (1, d, 0) with ¢; = 0.5 and the innovations follow a normal
distribution N (0, 1).

2. Gaussian FARIMA (0, d, 1) with 8; = 0.5 and the innovations follow a normal
distribution N (0, 1).

3. Gaussian FARIMA (1, d, 1) with ¢; = —0.3, 6; = —0.7 and the innovations
follow a normal distribution N (0, 1).

4. Gaussian FARIMA (1, d, 1) with ¢; = 0.3, 6; = 0.7 and the innovations follow
a normal distribution N (0, 1).

5. FARIMA (0, d, 0) where the innovations follow an exponential distribution
with rate A = 1.

6. FARIMA (0, d, 0) where the innovations follow a lognormal distribution with
parameters y = 0 and o = 1.
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FARIMA time series with Pareto innovations and fractional parameter = 0.1
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FIGURE 2.1: Example of a FARIMA time series with Pareto innova-
tions and fractional differencing parameter 4 = 0.1.

7. FARIMA(0, d, 0) where the innovations follow a symmetric stable distribution
with scale equal to 1 and stability parameter A = 1.5,1,2.

8. FARIMA(1, d, 1) with ¢y = 0.3, 8; = 0.7 and the innovations follow a symmet-
ric stable distribution with scale equal to 1 and stability parameter A = 1.5,1, 2.

9. FARIMA(O, d, 0) where the innovations follow a Pareto distribution with shape
A=15.

10. FARIMA(O, d, 0) where the innovations follow a skewed stable distribution
with scale equal to 1, skewness equal to 1 and stability parameter A = 1.5.

For each type of FARIMA model, I generate a single time series. The time series
thus used in this thesis are just an example of realization of a FARIMA process.

As an example, I show here the 9th time series (Pareto innovations) with d = 0.1
as this time series looks a lot like the low-frequency earthquake time series with
many values close to 0 and a burst of events from time to time. Figure 2.1 shows
the time series, and Figures 2.2 to 2.6 show the graph corresponding to each method
used to compute the fractional differencing parameter: absolute value method, vari-
ance method, variance of residuals methods, R/S statistic, and periodogram.

2.4 Data: The low-frequency earthquake catalogs

The Chestler catalog The low-frequency earthquake catalog from Chestler and
Creager (2017a) and Chestler and Creager (2017b) contains event times for 69 fam-
ilies of low-frequency earthquakes located in the Olympic Peninsula, Washington.
The catalogs start in June 2009 and end in September 2011. I converted each of the
69 catalogs into time series by counting the number of earthquakes per one-minute-
long time window.
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Log (First absolute moment)

H = 0.77 (true value = 0.77) - R2 = 0.97

0.3

0.2
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0.0
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1.0 1.5 2.0
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FIGURE 2.2: Absolute value method applied to the FARIMA time se-

ries from Figure 2.1. The horizontal axis is the logarithm of the length

m of the aggregation window and the vertical axis is the logarithm of
the first absolute moment AM (™).




2.4. Data: The low-frequency earthquake catalogs

d = 0.10 (true value = 0.10) - R2 = 1.00

o o =
o o o

(Sample variance)

Log
©
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FIGURE 2.3: Variance method applied to the FARIMA time series

from Figure 2.1. The horizontal axis is the logarithm of the length

m of the aggregation window and the vertical axis is the logarithm of
the sample variance of the aggregated time series X (™).
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d = 0.10 (true value = 0.10) - R2 = 1.00

N N w w
o Ul o U

Log (Mean variance of residuals)
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FIGURE 2.4: Variance of residuals method applied to the FARIMA

time series from Figure 2.1. The horizontal axis is the logarithm of

the size of the blocks m and the vertical axis is the logarithm of the
average of the variance of the residuals.



2.4. Data: The low-frequency earthquake catalogs 11

d = 0.15 (true value = 0.10) - R2 = 0.95
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FIGURE 2.5: R/S method applied to the FARIMA time series from

Figure 2.1. The horizontal axis is the logarithm of the lag time n and
the vertical axis is the logarithm of the ratio IS{((]]Z; .
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d = 0.13 (true value = 0.10) - R2 = 0.04
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FIGURE 2.6: Periodogram method applied to the FARIMA time series

from Figure 2.1. The horizontal axis is the logarithm of the frequency

f and the vertical axis is the logarithm of the estimator of the spectral
density I (f).
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FIGURE 2.7: Distribution of the value of the Hurst parameter H or the

fractional differencing parameter d for the catalogs from Chestler and

Creager (2017a) and Chestler and Creager (2017b) for the five meth-

ods of estimation. For better comparison between the distributions of
H and d, I plotted H — 0.5 instead of H.

The Northern California catalog The low-frequency earthquake catalog from Ducel-
lier and Creager (in revision) contains event times for 66 families of low-frequency
earthquakes located in Northern California. The catalogs start in January 2004 and
end in December 2011.

The Frank catalog The low-frequency earthquake catalog from Frank et al. (2014)
contains event times for 1120 families of low-frequency earthquakes located in Guer-
rero, Mexico. The catalogs start in January 2005 and end in April 2007.

The Shelly catalog The low-frequency earthquake catalog from Shelly (2017) con-
tains event times for 88 families of low-frequency earthquakes located on the San
Andreas Fault, California. The catalogs start in April 2001 and end in September
2016.

The Sweet catalog The low-frequency earthquake catalog from Sweet et al. (2019)
contains event times for 9 families of low-frequency earthquakes located in the Olympic
Peninsula, Washington. The catalogs start in October 2006 and end in October 2011.

2.5 Results

I first compared the true value of the fractional differencing parameter d with the
computed value for all the synthetic time series and all the graphical methods. The
results are shown in Figures 6.1 to 6.5. It is difficult to say which one works best as it
may vary depending on the type of innovations used and the value of the fractional
differencing parameter. For the time series with Pareto innovations, the variance
of residuals method and the R/S method seem to work well. The R/S method has
also been widely used to estimate long-range dependence in earthquake catalogs.
Figures 2.7 to 2.11 show the value of the Hurst parameter H and the fractional dif-
ferencing parameter d for all the families of low-frequency earthquakes for the five
catalogs studied in this thesis and the five methods used for the estimation.

The R/S method leads to several values of the fractional differencing parameter
d lower than 0 or much higher than 0.5 and does not seem to work very well on
these datasets. The values of d can be quite different from one method to another.



14

Chapter 2. Long-range dependence in low-frequency earthquake catalogs

Absolute value Variance Variance of residuals R/S Periodogram
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FIGURE 2.8: Distribution of the value of the Hurst parameter H or the
fractional differencing parameter d for the catalogs from Ducellier
and Creager (in revision) for the five methods of estimation. For bet-
ter comparison between the distributions of H and d, I plotted H — 0.5
instead of H.
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FIGURE 2.9: Distribution of the value of the Hurst parameter H or
the fractional differencing parameter d for the catalogs from Frank
et al. (2014) for the five methods of estimation. For better comparison
between the distributions of H and d, I plotted H — 0.5 instead of H.
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FIGURE 2.10: Distribution of the value of the Hurst parameter H or

the fractional differencing parameter d for the catalogs from Shelly

(2017) for the five methods of estimation. For better comparison be-
tween the distributions of H and d, I plotted H — 0.5 instead of H.
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FIGURE 2.11: Distribution of the value of the Hurst parameter H or
the fractional differencing parameter d for the catalogs from Sweet
et al. (2019) for the five methods of estimation. For better comparison
between the distributions of H and d, I plotted H — 0.5 instead of H.

However, many low-frequency earthquake families seem to show evidence of long-
range dependence. Maps of the values of the fractional differencing parameter are
shown in Figures 6.6 to 6.10, but it does not seem that there is any spatial pattern in
the variations on the values of d. The fractional differencing parameter can also be
quite different from one low-frequency earthquake family to another.

In this chapter, I have analyzed the low-frequency earthquake catalogs as time
series datasets, and I have found some evidence of long-range dependence. In the
following chapter, I will analyze the low-frequency earthquake catalogs as a point
process and estimate the parameters of a statistical model that could generate the
low-frequency earthquake events.
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Chapter 3

Earthquake occurrence modeling
with ETAS

Temporal models of seismicity have been developed to describe, analyze and fore-
cast the probabilities of regular earthquake occurrences (Zhuang et al., 2012). To
model long-term seismicity, the most basic model is a stationary Poisson model.
Stress-release models assume that the stress level in a certain region linearly in-
creases with time and then drop when there is an earthquake (Zheng and Vere-
Jones, 1991). To model short-term seismicity, the Omori-Utsu formula (Omori, 1894;
Utsu, 1957) describes the decay of the number of aftershocks after a mainshock as an
inverse power law K (t + ¢) 7, where t is the time from the occurrence of the main
shock, c is a constant introduced to better fit the model, and the decay rate p for reg-
ular earthquake catalogs can vary between 0.6 and 2.5 (Utsu, Ogata, and Matsu’ura,
1995). Short-term exciting, long-term correcting (SELC) models (Schoenberg and
Bolt, 2000) combine both the stress release and the clustering aspects of earthquake
activity. In this thesis, I am more interested in short-term seismicity and I chose
to model earthquake activity with an Epidemic-Type Aftershock Sequence (ETAS)
model. The ETAS model was first introduced by Ogata (1988). It takes into account
the magnitude frequency distribution law of Gutenberg and Richter (Gutenberg and
Richter, 1944) and the Omori-Utsu law of aftershock decay, but it allows each event,
irrespective of whether it is a small or a big event, to trigger its own offspring.

In the first section of this chapter, I describe the ETAS model. In the second sec-
tion of this chapter, I describe the two R packages that I have used to fit the models.
Finally, in the third section of this chapter, I fit ETAS models on several LFE families
and compare the results from the two R packages.

3.1 Epidemic-Type Aftershock Sequence

In this model, the probability of earthquake occurrence depends on the history of
the process. We denote H; the history up to but not including time ¢:

Hy = {(ti, mi) Vi < t} (31)

where t; is the time of the ith event and m; is its magnitude. If we denote by Nj (¢)
the number of events occurring in [t, t + ¢), the ground intensity function is defined
by:

o1
Ag (t| He) = lim <Pr{N; (t) > 0 | #:} (3.2)

In the ETAS model, the ground intensity function is written as:
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—t\F

Ag(E|Hi) =+ Y Aerlmi-me) (1+t ct’> (33)
it <t

where mc is a threshold magnitude. The term y represents the background event

rate. The term e*("i~"c) indicates that bigger earthquakes generate more aftershocks.

The last term corresponds to the Omori-Utsu law that says that the number of after-

shocks decays as K (t +¢) " *.

Each of the magnitudes of the events m; follows an exponential distribution. It
is assumed that the magnitudes of the events are independent and identically dis-
tributed, and that they are also independent from the history of the process:

Pr (m; > m) = e PU"=mc) for m > mc (3.4)

where m is the magnitude of completeness of the catalog. For regular earthquake
catalogs, we have 8 close to 2.3. For low-frequency earthquake catalogs, Sweet,
Creager, and Houston (2014) and Bostock et al. (2015) found much bigger values
equal to 9.2 and 14.5 respectively. The seismic moment M is related to the magnitude
m by the relationship:

M= 101.5m+9.1 (35)

As the magnitude follows an exponential distribution, the seismic moment fol-
lows a Pareto distribution. However, Sweet, Creager, and Houston (2014) suggested
that for low-frequency earthquakes an exponential distribution of the seismic mo-
ment could be more appropriate than a Pareto distribution.

3.2 Fitting the model

To fit the model,  have used two R packages: PtProcess by Harte (2010) and bayesianE-
TAS by Ross (2016).

To compute the likelihood, we denote T the time of the last event before time ¢,
and @) the null outcome, that is there is no event between time 7 and time ¢. The
conditional distribution of the time of the next event, that is the probability that the
time t of the next event is lower or equal to T given the history until time 7 (H.) and
the fact that there is no event between time T and time ¢, is denoted:

H (t | He N @m)) — pr {T >t He @m} (3.6)

and the corresponding density function is denoted h <t | HeN ®(T,t)). Then we
have:

h (t ‘ H m®(r,t))
1—H (£ HN D)

Ag (t | HN @(m) - (3.7)

Solving the differential equation gives:

H(tHNDpy) =1—exp {— /Tt A (11 HN D) du} (3.8)
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and:

B HN D) = Ag (t\HmQ)(T,t))exp{_/:Ag (w1 Hm@(w))du} (39)

The PtProcess package fits the model by maximizing the likelihood of the ground
intensity function. If T; and T, are the beginning and end time of the catalog and
we only explicitly include in the likelihood the events which time ¢; are such that
T, <t; < T5, the log-likelihood is equal to:

log L = logt (t1 | Hr, N@ry,) ) + Y logh (£ | Hi 1Ny, 1)
i=2

+ log (1 —H (TZ | He, N ®(t"'T2)>)

n f
_ ;log)xg (4 | M) — /T A <u | Hr, m@(mo du 4.10)
n t T
25 /t g (e 1) / g (1, 0 @)
Tz
= ), logAg(ti | Hy) —/ Ag (t | Hy)dt
T <t;<Tp T

For the distribution of the magnitude, the value of B is estimated independently
by subtracting the value of the magnitude of completeness m ¢ to all the magnitudes
m; and then computing the value of the maximum likelihood estimator for an expo-
nential distribution. For the LFE catalogs, I used a magnitude of completeness equal
to 0.

The bayesianETAS package fits the model using a Bayesian framework. The
ground intensity is written a little differently as:

)\g (t ‘ Ht) =u+ Z K(p _ 1) cP—1px(mi—mc) 1

— (3.11)
it <t (c+t—t)F

which is equivalent to Equation 3.3 if A = Kp%l. Priors are chosen for the five
parameters: a Gamma distribution for y#, and uniform distributions for log K, log «, ¢
and p. Samples of the posterior distribution are then drawn using a MCMC scheme.

3.3 Results

I focused on the catalogs by Chestler and Creager (2017a) and Chestler and Creager
(2017b) as they are the only ones for which magnitude is provided. For each of the
families in the catalog, I fitted an ETAS model with the two R packages using the
maximum likelihood estimator for both cases. Figure 3.1 shows a comparison of the
results from both packages for the 5 parameters of the ETAS model.

I obtained very different values with the two packages. For the PtProcess pack-
age, Harte (2010) suggests to choose initial values for the parameters, take the log-
arithm, then maximize the likelihood using the R function optim, then use the re-
sults of the first optimization process as an input for a second optimization carried
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FIGURE 3.1: Top: Comparison between the maximum likelihood es-

timate obtained with the bayesianETAS package and the maximum

likelihood estimate obtained with the PtProcess package for the five

parameters of the ETAS model. Middle: Distribution of the values ob-

tained with the bayesianETAS package for all the LFE families. Bot-

tom: Distribution of the values obtained with the PtProcess package
for all the LFE families.
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out with the R function nlm. We then obtain the maximum likelihood estimator by
taking the exponential of the result. It is also possible to compute the maximum
likelihood estimator with the package bayesianETAS although it is unclear how the
optimization is done. A first reason for the difference in the results from the two
packages is that the ground intensity function is not written exactly in the same
way in both packages: bayesianETAS uses the parameter K and PtProcess uses the
parameter A = Kprl. Another problem is that the 5 parameters of the ground in-
tensity function function are not independent of each other. Finally, the user has to
choose starting values for the package PtProcess, but it is unclear what the starting
values are for the package bayesianETAS.

In the MCMC method from the package bayesianETAS, the parameters sets {y },
{K,a} and {p, c} are independent of each other conditional on some latent variables,
and it may improve the results. Indeed, the results from the bayesian method can be
quite different from the results from the maximum likelihood method. Figures 7.1
to 7.5 show a comparison of the values of u, A, «,c, p obtained with the maximum
likelihood method of the package bayesianETAS with the sample mean of the poste-
rior distributions obtained with the package bayesianETAS for all families. In order
to improve the results from the optimization with PtProcess, it might be interesting
to use the parameter estimates from bayesianETAS (for example the sample mean of
the posterior distribution) as the starting values.

I now focus one one LFE family (2009.11.12.6.12.19). The ground intensity func-
tion parameters obtained with the package PtProcess for this family are:

u = 0.0139

A = 836.4

¢ = 0.000587 (3.12)
p = 1.504

a = 2.49510~7

while the parameters obtained with the maximum likelihood method from the pack-
age bayesianETAS for this family are:

u=0.178
A =3276
c = 0.0403 (3.13)
p = 3.165
a = 0.296

Figure 3.2 shows the posterior distribution of the parameters obtained from the
package bayesianETAS. For parameters ¢ and p, the posterior distribution is limited
to a single point. The cause of this anomaly is unclear. This may be due to the prior
distribution chosen for these parameters, but its is not possible to change the prior
with the package bayesianETAS.

The goodness of fit of the model can be evaluated by computing the transformed
times. If we denote t; the times of the observed events, the transformed times are:

- / (t] He)d (3.14)
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FIGURE 3.2: Posterior distribution of the parameters y, K, ¢, p and &
obtained with package bayesianETAS for family 2009.11.12.6.12.19.
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FIGURE 3.3: Left: Number of LFEs per day (black) for family
2009.11.12.6.12.19 and fitted ground intensity function (red). Right:

Residual process 7; —i,i =1,--- ,n as afunctionofi,i =1,--- ,n for
family 2009.11.12.6.12.19.

where /A\g (t | H:) is the fitted ground intensity function. The sequence of trans-
formed times is called the residual process. If the data were sampled from the fitted
ground intensity function, then the transform times should form a stationary Pois-
son process with rate parameter equal to 1. To verify if this is the case, we can plot
the 7;,i = 1,--- ,nmas a function of i = 1,--- ,n and check if they follow the first
diagonal. Another way of representing it is to plot 7; —i,i = 1,--- ,n as a function
ofi =1,---,nand check if it has a zero slope.

Figure 3.3 shows the fitted ground intensity function and the i; —i,i =1,--- ,n
for family 2009.11.12.6.12.19. There is a peak (at about 350 days) in the ground in-
tensity function that does not correspond to a burst in LFE activity. There are also
a lot of deviations from a horizontal line for the T; —i,i = 1,- - - ,n which indicates
that the fitted model may not fit the data very well.

In this chapter, I have analyzed the low-frequency earthquake catalogs as a point
process and I have fitted an Epidemic-Type Aftershock Sequence model for each
family of the catalog by Chestler and Creager (2017a) and Chestler and Creager
(2017b). In the next chapter, I will explore whether this kind of model can generate
earthquake catalogs that show some evidence of long-range dependence.
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Chapter 4

Stochastic modeling

In the second chapter of this thesis, I showed that several families of low-frequency
earthquakes show evidence of apparent long-range dependence. In the third chapter
of this thesis, I modeled the low-frequency earthquake catalogs with an Epidemic-
Type Aftershock Sequence model and fitted the parameters of these models. I now
verify whether it is possible to observe apparent long-range dependence with this
type of model. In the first section of this chapter, I explain how to generate synthetic
earthquake catalogs using the thinning algorithm. In the second section of this chap-
ter, I use the parameters from the model obtained in Chapter 3 to generate synthetic
catalogs and I try to fit FARIMA models on them.

4.1 The thinning algorithm

I'use the same method as in the R package PtProcess to simulate earthquake catalogs.
The ground intensity function Ag (t | H;) decreases with time t. If we generate an
event during a simulation interval starting at time 7 using the maximum event rate
over this interval Ayuy = Ag (T | H<), the inter-event time will be too small and we
will generate too much events. The idea of the thinning algorithm is thus to first
generate too much events and then to "thin", that is eliminate some of the events
generated. The procedure is the following:

1. Start at time 7.
2. Calculate the ground intensity function at time 7: Aq (7 | H¢).

3. Simulate a random number ¢ that follows an exponential distribution with rate

Ag (T | He).

4. Simulate a random number U that follows a uniform distribution on the inter-
val (0,1). If:

Ao (TH+E)
NG

then a new event occurs at time ¢t = T 4 ¢. Simulate the associated magnitude
of the event using an exponential distribution with rate B as in equation 3.4.

5. Increment T for the simulation of the next event: T <— 7+ ¢

6. Return to step 2.
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FIGURE 4.1: Left panel: Distribution of the fractional differencing pa-

rameter obtained from 100 simulated earthquake sequences using the

ETAS model parameters obtained for family 2009.11.12.6.12.19 with

package bayesianETAS. Right panel: Distribution of the lower bound-

ary of the 95 % confidence interval for the parameter d of the fitted
models.

4.2 Numerical simulations

I first used the results from the package bayesianETAS. For each family of low-
frequency earthquakes, I used the posterior distribution of the ETAS model param-
eters (1, K,c,p,a) and I randomly generated a sample. I then used the thinning
algorithm to generate a sequence of earthquake events with associated magnitude.
I then transformed the earthquake sequence into a time series by counting the num-
ber of earthquakes per day. I fitted a FARIMA model on this time series using the
R package fracdiff and obtained the corresponding value of the fractional differenc-
ing parameter d. I then repeated this process 100 times. Figure 4.1 shows as an
example the distribution of the fractional differencing parameter d for the family
2009.11.12.6.12.19. To verify whether there is long-range dependence in the time se-
ries, I also computed the 95 % (Wald) confidence interval of the fitted model for the
parameter d using the function confint.fracdiff of the package fracdiff. If this interval
contains 0, we cannot reject the hypothesis that there is no long-range dependence in
the time series. The distribution of the lower boundary of the 95 % confidence inter-
val for the fitted fractional differencing parameter 4 and for family 2009.11.12.6.12.19
is also shown on Figure 4.1.

For the package PtProcess, we only have the parameters estimated using the
maximum likelihood. I generated 100 earthquake sequences with the same set of
parameters and computed the distribution of the fractional differencing parameter
d for the family 2009.11.12.6.12.19 (Figure 4.2).

Finally, Figure 4.3 shows the distribution of the fractional differencing parameter
d for all the families of the catalog from Chestler and Creager (2017a) and Chestler
and Creager (2017b) and the distribution of the lower boundary of the 95 % confi-
dence interval for the parameter d of the fitted models. In both cases, about half of
the simulated time series obtained using the parameters from the fitted ETAS model
do not show evidence of long-range dependence. This may be due because the fitted



4.2. Numerical simulations 25

Family 2009.11.12.6.12.19 Family 2009.11.12.6.12.19

60
20

50
40 15

30
10

20
5

10
0 0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 —-0.20-0.15-0.10-0.05 0.00 0.05 0.10 0.15 0.20
Fractional differencing parameter Lower limit of 95% confidence interval

FIGURE 4.2: Left panel: Distribution of the fractional differencing pa-

rameter obtained from 100 simulated earthquake sequences using the

ETAS model parameters obtained for family 2009.11.12.6.12.19 with

package PtProcess. Right panel: Distribution of the lower boundary

of the 95 % confidence interval for the parameter 4 of the fitted mod-
els.

models did not seem to fit well the initial earthquake sequences. Another problem
is that the simulated earthquake sequences did not show characteristic features of
a low-frequency earthquake catalog, with bursts of earthquake activity for several
days followed by weeks or months of much lower earthquake activity.

For about half of the simulations, the lower boundary of the 95 % confidence
interval is negative, which means than the confidence interval either contains 0, or
contains only negative values. This means that for about half of the simulations,
we cannot reject the hypothesis that there is no long-range dependence in the sim-
ulated time series. Therefore, the ETAS models obtained in Chapter 3 are not very
successful at reproducing the long-range dependence observed in Chapter 2.
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Chapter 5

Perspectives

For research beyond the scope of this thesis, I first intend to improve the methods to
estimate the fractional differencing parameter d. In the periodogram method, the re-
gression is done over the whole range of frequencies. However, as the exact form of
the spectral density is known for the synthetic time series generated with a FARIMA
model, it is possible to compare the values of the spectral density with the values of
the periodogram and determine for which interval of frequencies the linear relation-
ship holds and the linear regression can be used to estimate the value of d.

I only generated one possible realization of each type of FARIMA model studied.
It would be more interesting to generate several realizations of the same FARIMA
model to be able to see the distribution of the estimated value of the fractional dif-
ferencing parameter. Additionally, the synthetic time series have length N = 10000
as in Taqqu and Teverovsky (1998), which is different from the length of the LFE
time series. The length of the LFE time series depends only on the value of the unit
of time chosen for the transformation of the catalog into a time series and any value
can be chosen. In the future, I intend to test several values of the length of the syn-
thetic time series to verify whether some methods to detect long-range dependence
work better than others depending on the length of the time series and the value
of the fractional differencing parameter. Then, the value of the unit of time used to
transform the LFE catalogs into time series can be chosen in such a way that the final
time series has the same length as the synthetic time series.

By estimating both the value of the Hurst parameter H and the fractional differ-
encing parameter d for a single LFE time series, it is possible to deduce what could
be the value of the corresponding shape of the Pareto distribution «. Then, I intend
to make new synthetic time series using this value of a to evaluate how well the dif-
ferent methods work on a synthetic time series as close as possible to the actual time
series.

Low-frequency earthquakes are small magnitude earthquakes and the signal-to-
noise ratios of the seismic recordings are low. As a result, many low-magnitude LFEs
may be missing from the datasets, and many LFEs may actually be false detections.
It is reasonable to assume that the false detections is a homogeneous Poisson pro-
cess and thus the presence of false detections in the earthquake catalog will lead to
an overestimate of the value of the background seismicity rate y in the ETAS model.
However, one important parameter of the ETAS model is the value of the magnitude
of completeness ¢, that is the magnitude above which 100% of the earthquakes are
detected and there is no missing data. When fitting the ETAS model, only earth-
quakes whose magnitudes are higher than m¢ should be kept and the others should
be discarded. In a future work, it would be useful to try to establish what could be
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the magnitude of completeness of the LFE catalogs used in this thesis.

The package bayesianETAS does not currently contain methods to compute the
fitted ground intensity function and the corresponding residuals. In a future work,
I intend to extend the goodness-of-fit analysis done for the models obtained with
the package PtProcess and do the same goodness-of-fit analysis with the models
obtained with the package bayesianETAS.
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Supplementary figures for Chapter
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FIGURE 6.1: Comparison between the true value of the fractional dif-

ferencing parameter and the computed value of the fractional differ-

encing parameter with the absolute value method for the ten syn-
thetic time series.
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FIGURE 6.2: Comparison between the true value of the fractional dif-
ferencing parameter and the computed value of the fractional differ-
encing parameter with the variance method for the ten synthetic time
series.
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FIGURE 6.3: Comparison between the true value of the fractional dif-
ferencing parameter and the computed value of the fractional differ-
encing parameter with the variance of residuals method for the ten
synthetic time series.
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FIGURE 6.4: Comparison between the true value of the fractional dif-

ferencing parameter and the computed value of the fractional differ-

encing parameter with the R/S method for the ten synthetic time se-
ries.
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FIGURE 6.5: Comparison between the true value of the fractional dif-

ferencing parameter and the computed value of the fractional differ-

encing parameter with the periodogram method for the ten synthetic
time series.
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FIGURE 6.6: Map of the fractional differencing parameters computed

with the variance of residuals method for the Chestler catalogs.
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FIGURE 6.7: Map of the fractional differencing parameters computed
with the variance of residuals method for the Northern California cat-
alogs.
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FIGURE 6.8: Map of the fractional differencing parameters computed
with the variance of residuals method for the Frank catalogs.
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FIGURE 6.9: Map of the fractional differencing parameters computed
with the variance of residuals method for the Shelly catalogs.
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FIGURE 6.10: Map of the fractional differencing parameters com-
puted with the variance of residuals method for the Sweet catalogs.
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FIGURE 7.1: Comparison of the values of log (y) obtained with
the maximum likelihood method with the logarithm of the sample
mean of the posterior distribution of y obtained with the package

bayesianETAS.
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FIGURE 7.2: Comparison of the values of log(A) obtained with

the maximum likelihood method with the logarithm of the sample

mean of the posterior distribution of A obtained with the package
bayesianETAS.
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FIGURE 7.4: Comparison of the values of c obtained with the maxi-

mum likelihood method with the sample mean of the posterior distri-

bution of u obtained with the package bayesianETAS. The maximum

likelihood estimate of ¢ for family 2010.8.16.15.12.2 is not plotted here
because it is much larger than the other values.
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FIGURE 7.5: Comparison of the values of p obtained with the maxi-

mum likelihood method with the sample mean of the posterior distri-

bution of u obtained with the package bayesianETAS. The maximum

likelihood estimate of p for family 2010.8.9.6.10.55 is not plotted here
because it is much larger than the other values.
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