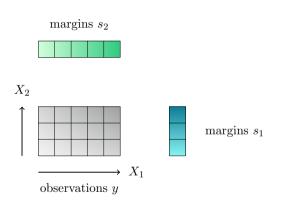


2025 International Conference on Continuous Optimization

Fast optimization approaches for raking

Ariane Ducellier

What is raking?



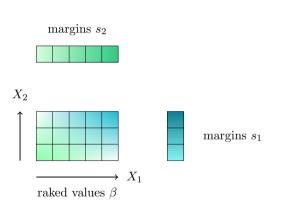
Two categorical variables X_1 and X_2 taking I and J possible values.

When summing the rows and columns of the table y, the observations y_{ij} do not add up to the values in the margins s_1 and s_2 .

$$\sum_{i=1}^{I} y_{ij} \neq s_{1j} \quad j = 1, \cdots, J$$

$$\sum_{i=1}^{J} y_{ij} \neq s_{2i} \quad i = 1, \cdots, I$$

What is raking?



After raking, the raked values β_{ij} in the updated table β sum correctly to the values in the margins s_1 and s_2 .

$$\sum_{i=1}^{I} \beta_{ij} = s_{1j} \quad j = 1, \cdots, J$$

$$\sum_{j=1}^{J}\beta_{ij}=s_{2i} \quad i=1,\cdots,I$$

Note: For the problem to have a solution, we need the margins to be consistent:

$$\sum_{j=1}^{J} s_{1j} = \sum_{i=1}^{I} s_{2i}$$

Global health example

- The observation table may be the number of deaths from each cause i and each sub-region j.
 The margins are the number of deaths from all causes for each sub-region j and the number of deaths from each cause i for the entire region.
- For some reason (e.g. errors in data collection, the table is the output of a model that does not
 include the constraints on the margins), the partial sums on the observations do not match the
 margins.
- We trust more the margins than the observations.

Raking as an optimization problem

 $y \in \mathbb{R}^p$ is the vectorized observation table.

 $s \in \mathbb{R}^k$ are the known margins, i.e. the known partial sums on the table.

 $A \in \mathbb{R}^{k \times p}$ summarizes how to compute the partial sums.

 $\beta \in \mathbb{R}^p$ are the unknown raked values.

 $w \in \mathbb{R}^p$ are raking weights chosen by the user.

 f^w is a separable, derivable, positive, strictly convex function chosen by the user.

$$\min_{\beta \in \mathbb{R}^{p}} f^{w}\left(\beta;y\right) \quad \text{s.t.} \quad A\beta = s \quad \text{with} \quad f^{w}\left(\beta;y\right) = \sum_{i=1}^{p} w_{i} f_{i}\left(\beta_{i},y_{i}\right)$$

Raking as an optimization problem

Examples:

1D problem:
$$A = \mathbb{1}_p^T$$

2D problem:
$$A = \begin{pmatrix} I_J \otimes \mathbb{1}_I^T \\ \mathbb{1}_J^T \otimes I_I \end{pmatrix}$$

Note: We need to ensure that all the constraints are consistent and we trim the redundant constraints such that rank $(A \in \mathbb{R}^{k \times p}) = k \leq p$.

Dual formulation

$$\mathcal{P}: \quad \min_{\beta \in \mathbb{R}^p} f^w \left(\beta, y\right) \quad \text{s.t} \quad A\beta = s$$

$$\mathcal{L}:\quad f^{w}\left(\beta,y\right)+\lambda^{T}(A\beta-s)$$

$$\mathcal{D}: \quad \min_{\lambda \in \mathbb{R}^k} f^{w*} \left(-A^T \lambda \right) + \lambda^T s$$

As $k \le p$, we decrease the dimension of the problem by using the dual formulation instead of the primal formulation.

Dual formulation

Solve for λ :

$$s - A\nabla_z f^{w*} \left(-A^T \lambda \right) = 0$$

Newton's method: At each iteration, we get $\lambda^{(n+1)} = \lambda^{(n)} - \gamma \Delta \lambda^{(n)}$ with:

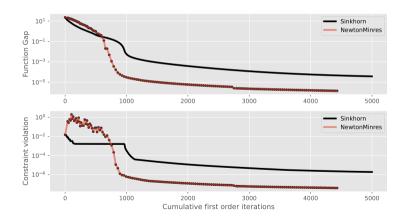
$$A\nabla_{z}^{2}f^{w*}\left(-A^{T}\lambda^{(n)}\right)A^{T}\Delta\lambda^{(n)}=s-A\nabla_{z}f^{w*}\left(-A^{T}\lambda^{(n)}\right)$$

Final solution: $\beta^* = \nabla_z f^{w*} \left(-A^T \lambda^* \right)$

Note: A has rank k and f^w is separable so $A\nabla_z^2 f^{w*}\left(-A^T\lambda\right)A^T$ is invertible.

Comparison with Sinkhorn algorithm

We can solve the 2D problem with Sinkhorn algorithm \rightarrow We get a comparable computation time with the dual formulation and Newton's method.



Common distance functions

	Distance $f_i\left(\beta_i;y_i\right)$	Solution	Note
χ^2	$rac{1}{2y_i}\left(eta_i-y_i ight)^2$	$eta^* = y \odot \left(1 - rac{1}{w} \odot A^T \lambda^* ight)$	Solved in 1 iteration.
			The raked values have
Entropic	$\boldsymbol{\beta}_i \log \left(\frac{\beta_i}{y_i}\right) - \boldsymbol{\beta}_i + \boldsymbol{y}_i$	$\beta^* = y \odot \exp\left(-\frac{1}{w} \odot A^T \lambda^*\right)$	the same sign as
			the initial observations.
Logit	$(\beta_i - l_i) \log \tfrac{\beta_i - l_i}{y_i - l_i} + (h_i - \beta_i) \log \tfrac{h_i - \beta_i}{h_i - y_i}$	$\beta^* = \frac{l \odot (h-y) + h \odot (y-l) \odot e^{-\frac{1}{w} \odot A^T \lambda^*}}{(h-y) + (y-l) \odot e^{-\frac{1}{w} \odot A^T \lambda^*}}$	The raked values stay
			between l_i and h_i
			when we rake
			prevalence observations.

Feasibility of the problem

 $f_i(\beta_i, y_i)$ is only defined when $y_i \neq 0$.

Let $P \in \mathbb{R}^{\tilde{p} \times p}$ be a permutation matrix that selects the $\tilde{p} < p$ entries of y that are non-zeros.

Let $Q \in \mathbb{R}^{(p-\tilde{p}) \times p}$ be a permutation matrix that selects the $p-\tilde{p}$ entries of y that are zeros.

Let us denote:

$$\tilde{y} = Py \quad \text{ and } \quad \tilde{A} = AP^T$$

We have:

$$(P^TP + Q^TQ) y = y$$
 and $(P^TP + Q^TQ) \beta = \beta$

Feasibility of the problem

The problem becomes:

$$\begin{split} & \min_{\beta \in \mathbb{R}^p} f^w \left(P\beta, Py \right) \quad \text{s.t.} \quad A\beta = s \quad \text{and} \quad Q\beta = 0 \\ & \min_{\beta \in \mathbb{R}^p} f^w \left(\tilde{\beta}, \tilde{y} \right) \quad \text{s.t.} \quad A \left(P^T P + Q^T Q \right) \beta = s \quad Q\beta = 0 \\ & \min_{\beta \in \mathbb{R}^p} f^w \left(\tilde{\beta}, \tilde{y} \right) \quad \text{s.t.} \quad \left(A P^T \right) \left(P\beta \right) = s \quad Q\beta = 0 \end{split}$$

We get the reduced problem:

$$\mathcal{P}: \quad \min_{\tilde{\beta} \in \mathbb{R}^{\tilde{p}}} f^{w}\left(\tilde{\beta}, \tilde{y}\right) \quad \text{s.t.} \quad \tilde{A}\tilde{\beta} = s$$

The problem has a solution if $\tilde{A}=AP^T\in\mathbb{R}^{k\times \tilde{p}}$ has rank k or if s is in the column space of \tilde{A} .

Feasibility of the problem

$$\begin{pmatrix} 1 & 2 \end{pmatrix}$$

Example:

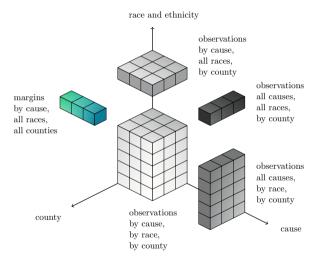
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$y = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \quad s = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \quad A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

$$AP^T = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ has rank 2}$$

and $\begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$ is not in the column space of $\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$ so the problem does not have a solution.

Aggregated observations



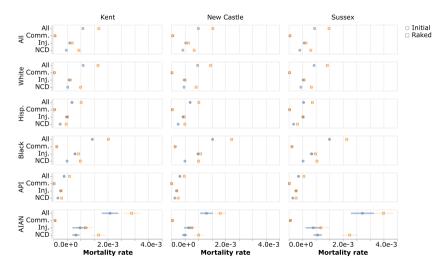
Aggregated observations

$$\min_{\beta\in\mathbb{R}^{p}}f^{w}\left(B\beta,y\right)\quad\text{s.t.}\quad A\beta=s\quad\text{with}\quad B\in\mathbb{R}^{q\times p}\text{ an aggregation matrix}$$

With auxiliary variable $\zeta \in \mathbb{R}^q$ and additional constraint $\zeta := B\beta$, the problem becomes:

$$\begin{split} \mathcal{P} : & & \min_{\beta \in \mathbb{R}^p, \zeta \in \mathbb{R}^q} f^w \left(\zeta, y \right) \quad \text{s.t.} \quad \begin{pmatrix} A & 0 \\ B & -I \end{pmatrix} \begin{pmatrix} \beta \\ \zeta \end{pmatrix} = \begin{pmatrix} s \\ 0 \end{pmatrix} \\ & \mathcal{L} : & & f^w \left(\zeta, y \right) + \lambda_A^T \left(A\beta - s \right) + \lambda_B^T \left(B\beta - \zeta \right) \\ & \mathcal{D} : & & \min_{\lambda_A \in \mathbb{R}^k, \lambda_B \in \mathbb{R}^q} \lambda_A^T s + f^{w*} \left(\lambda_B, y \right) + \delta_0 \left(-A^T \lambda_A - B^T \lambda_B \right) \\ & \text{OPT} : & & \zeta^* = \nabla_z f^{w*} \left(\lambda_B^*, y \right), \quad \begin{pmatrix} A \\ B \end{pmatrix} \beta^* = \begin{pmatrix} s \\ \zeta^* \end{pmatrix} \end{split}$$

Aggregated observations



Given:

- $\Sigma_y \in \mathbb{R}^{p \times p}$, the covariance matrix of the observations vector y,
- $\Sigma_s \in \mathbb{R}^{k \times k}$, the covariance matrix of the margins vector s and
- $\Sigma_{ys} \in \mathbb{R}^{p \times k}$, the covariance matrix of y and s,

find:

• $\Sigma_{\beta^*} \in \mathbb{R}^{p \times p}$, the covariance matrix of the estimated raked values β^* .

The primal problem:

$$\min_{\beta \in \mathbb{R}^p} \max_{\lambda \in \mathbb{R}^k} f^w \left(\beta, y\right) + \lambda^T (A\beta - s)$$

can also be written:

$$F(\beta, \lambda; y, s) = \begin{bmatrix} \nabla_{\beta} f^{w}(\beta, y) + A^{T} \lambda \\ A\beta - s \end{bmatrix} = 0$$

and has solution:

$$\beta^* = \phi\left(y,s\right) \text{ with } \phi: \mathbb{R}^{p+k} \to \mathbb{R}^p$$

We get:

$$\Sigma_{\beta^*} = \phi'_{ys}\left(y, s\right) \Sigma \phi'^{T}_{ys}\left(y, s\right)$$

with:

$$\phi_{ys}^{\prime}\left(y,s\right) = \begin{pmatrix} \frac{\partial\beta^{*}}{\partial y} & \frac{\partial\beta^{*}}{\partial s} \end{pmatrix} = \begin{pmatrix} \frac{\partial\phi_{1}}{\partial y_{1}}\left(y,s\right) & \dots & \frac{\partial\phi_{1}}{\partial y_{p}}\left(y,s\right) & \frac{\partial\phi_{1}}{\partial s_{1}}\left(y,s\right) & \dots & \frac{\partial\phi_{1}}{\partial s_{k}}\left(y;s\right) \\ \vdots & & \vdots & & \vdots & & \vdots \\ \frac{\partial\phi_{p}}{\partial y_{1}}\left(y,s\right) & \dots & \frac{\partial\phi_{p}}{\partial y_{p}}\left(y,s\right) & \frac{\partial\phi_{p}}{\partial s_{1}}\left(y,s\right) & \dots & \frac{\partial\phi_{p}}{\partial s_{k}}\left(y,s\right) \end{pmatrix}$$

and:

$$\Sigma = \begin{pmatrix} \Sigma_y & \Sigma_{ys} \\ \Sigma_{ys}^T & \Sigma_s \end{pmatrix}$$

Implicit Function Theorem: When differentiating the primal problem $F(y,s;\phi(y,s))=0$ at the solution (β^*,λ^*) , we get:

$$\left[D_{\beta,\lambda}F(y,s;\beta^*,\lambda^*)\right]\left[D_{y,s}\phi\left(y,s\right)\right]+\left[D_{y,s}F(y,s;\beta^*,\lambda^*)\right]=0$$

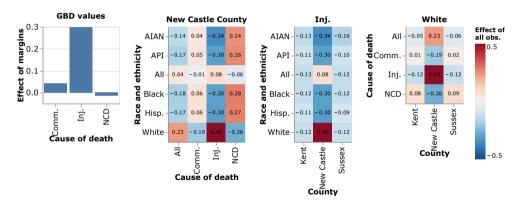
We have:

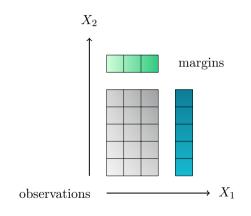
$$D_{\beta,\lambda}F = \begin{pmatrix} \nabla_{\beta}^{2}f^{w}\left(\beta^{*},y\right) & A^{T} \\ A & 0_{k\times k} \end{pmatrix} \text{ and } D_{y,s}F = \begin{pmatrix} \nabla_{\beta y}^{2}f^{w}\left(\beta^{*};y\right) & 0_{p\times k} \\ 0_{k\times p} & -I_{k\times k} \end{pmatrix}$$

thus we can compute:

$$D_{y,s}\phi = \begin{pmatrix} \frac{\partial \beta^{*}}{\partial y} & \frac{\partial \beta^{*}}{\partial s} \\ \frac{\partial \lambda^{*}}{\partial y} & \frac{\partial \lambda^{*}}{\partial s} \end{pmatrix} \text{ and } \phi'_{ys}\left(y,s\right) = \begin{pmatrix} \frac{\partial \beta^{*}}{\partial y} & \frac{\partial \beta^{*}}{\partial s} \end{pmatrix}$$

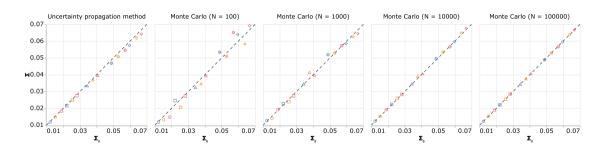
Sensitivity of the variance of the raked value with the observations and margins.





- Generate 3×5 values following $\mathcal{U}nif([2;3])$
- Compute the margins $s_1 = \beta_0^T 1$ and $s_2 = \beta_0 1$ \rightarrow We get a balanced table β_0
- Add random noise: $y_0 = \beta_0 + \mathcal{N} (\mu = 0, \sigma = 0.1)$
- Choose covariance matrix Σ:
 - Off-diagonal elements equal to 0.01
 - Diagonal elements equal to $\Sigma_{k,k} = 0.1 \times k$ for k=1,15
- The observations y follow a MVN distribution with expectancy y_0 and covariance Σ .

Comparison between the variance of the estimator β^* obtained with the variance propagation method or obtained by raking each sample and computing the sample covariance of the results.



Questions?

PyPI: https://pypi.org/project/raking/

GitHub: https://github.com/ihmeuw-msca/raking

