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What is raking?

observations y

margins s1

margins s2

X1

X2

Two categorical variables 𝑋1 and 𝑋2 taking 𝐼 and
𝐽 possible values.

When summing the rows and columns of the

table 𝑦, the observations 𝑦𝑖𝑗 do not add up to the

values in the margins 𝑠1 and 𝑠2.

𝐼
∑
𝑖=1

𝑦𝑖𝑗 ≠ 𝑠1𝑗 𝑗 = 1, ⋯ , 𝐽

𝐽
∑
𝑗=1

𝑦𝑖𝑗 ≠ 𝑠2𝑖 𝑖 = 1, ⋯ , 𝐼
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What is raking?

raked values β

margins s1

margins s2

X1

X2

After raking, the raked values 𝛽𝑖𝑗 in the updated

table 𝛽 sum correctly to the values in the margins

𝑠1 and 𝑠2.

𝐼
∑
𝑖=1

𝛽𝑖𝑗 = 𝑠1𝑗 𝑗 = 1, ⋯ , 𝐽

𝐽
∑
𝑗=1

𝛽𝑖𝑗 = 𝑠2𝑖 𝑖 = 1, ⋯ , 𝐼

Note: For the problem to have a solution, we need

the margins to be consistent:

𝐽
∑
𝑗=1

𝑠1𝑗 =
𝐼

∑
𝑖=1

𝑠2𝑖
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Global health example

• The observation table may be the number of deaths from each cause 𝑖 and each sub-region 𝑗.
The margins are the number of deaths from all causes for each sub-region 𝑗 and the number of

deaths from each cause 𝑖 for the entire region.

• For some reason (e.g. errors in data collection, the table is the output of a model that does not

include the constraints on the margins), the partial sums on the observations do not match the

margins.

• We trust more the margins than the observations.
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Raking as an optimization problem

𝑦 ∈ ℝ𝑝 is the vectorized observation table.

𝑠 ∈ ℝ𝑘 are the knownmargins, i.e. the known partial sums on the table.

𝐴 ∈ ℝ𝑘×𝑝 summarizes how to compute the partial sums.

𝛽 ∈ ℝ𝑝 are the unknown raked values.

𝑤 ∈ ℝ𝑝 are raking weights chosen by the user.

𝑓𝑤 is a separable, derivable, positive, strictly convex function chosen by the user.

min
𝛽∈ℝ𝑝

𝑓𝑤 (𝛽; 𝑦) s.t. 𝐴𝛽 = 𝑠 with 𝑓𝑤 (𝛽; 𝑦) =
𝑝

∑
𝑖=1

𝑤𝑖𝑓𝑖 (𝛽𝑖, 𝑦𝑖)
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Raking as an optimization problem

Examples:

1D problem: 𝐴 = 𝟙𝑇
𝑝

2D problem: 𝐴 = (𝐼𝐽 ⊗ 𝟙𝑇
𝐼

𝟙𝑇
𝐽 ⊗ 𝐼𝐼

)

Note: We need to ensure that all the constraints are consistent and we trim the redundant

constraints such that rank (𝐴 ∈ ℝ𝑘×𝑝) = 𝑘 ≤ 𝑝.
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Dual formulation

𝒫 ∶ min
𝛽∈ℝ𝑝

𝑓𝑤 (𝛽, 𝑦) s.t 𝐴𝛽 = 𝑠

ℒ ∶ 𝑓𝑤 (𝛽, 𝑦) + 𝜆𝑇 (𝐴𝛽 − 𝑠)

𝒟 ∶ min
𝜆∈ℝ𝑘

𝑓𝑤∗ (−𝐴𝑇𝜆) + 𝜆𝑇𝑠

As 𝑘 ≤ 𝑝, we decrease the dimension of the problem by using the dual formulation instead of the

primal formulation.
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Dual formulation

Solve for 𝜆:

𝑠 − 𝐴∇𝑧𝑓𝑤∗ (−𝐴𝑇𝜆) = 0

Newton’s method: At each iteration, we get 𝜆(𝑛+1) = 𝜆(𝑛) − 𝛾Δ𝜆(𝑛) with:

𝐴∇2
𝑧𝑓𝑤∗ (−𝐴𝑇𝜆(𝑛)) 𝐴𝑇Δ𝜆(𝑛) = 𝑠 − 𝐴∇𝑧𝑓𝑤∗ (−𝐴𝑇𝜆(𝑛))

Final solution: 𝛽∗ = ∇𝑧𝑓𝑤∗ (−𝐴𝑇𝜆∗)

Note: 𝐴 has rank 𝑘 and 𝑓𝑤 is separable so 𝐴∇2
𝑧𝑓𝑤∗ (−𝐴𝑇𝜆) 𝐴𝑇 is invertible.
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Comparison with Sinkhorn algorithm

We can solve the 2D problem with Sinkhorn algorithm → We get a comparable computation time

with the dual formulation and Newton’s method.
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Common distance functions

Distance 𝑓𝑖 (𝛽𝑖; 𝑦𝑖) Solution Note

𝜒2 1
2𝑦𝑖

(𝛽𝑖 − 𝑦𝑖)2 𝛽∗ = 𝑦 ⊙ (1 − 1
𝑤 ⊙ 𝐴𝑇𝜆∗) Solved in 1 iteration.

Entropic 𝛽𝑖 log ( 𝛽𝑖
𝑦𝑖

) − 𝛽𝑖 + 𝑦𝑖 𝛽∗ = 𝑦 ⊙ exp (− 1
𝑤 ⊙ 𝐴𝑇𝜆∗)

The raked values have

the same sign as

the initial observations.

Logit (𝛽𝑖 − 𝑙𝑖) log 𝛽𝑖−𝑙𝑖
𝑦𝑖−𝑙𝑖

+ (ℎ𝑖 − 𝛽𝑖) log ℎ𝑖−𝛽𝑖
ℎ𝑖−𝑦𝑖

𝛽∗ = 𝑙⊙(ℎ−𝑦)+ℎ⊙(𝑦−𝑙)⊙𝑒− 1
𝑤 ⊙𝐴𝑇𝜆∗

(ℎ−𝑦)+(𝑦−𝑙)⊙𝑒− 1
𝑤 ⊙𝐴𝑇𝜆∗

The raked values stay

between 𝑙𝑖 and ℎ𝑖
when we rake

prevalence observations.
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Feasibility of the problem

𝑓𝑖 (𝛽𝑖, 𝑦𝑖) is only defined when 𝑦𝑖 ≠ 0.

Let 𝑃 ∈ ℝ𝑝̃×𝑝 be a permutation matrix that selects the ̃𝑝 < 𝑝 entries of 𝑦 that are non-zeros.

Let 𝑄 ∈ ℝ(𝑝−𝑝̃)×𝑝 be a permutation matrix that selects the 𝑝 − ̃𝑝 entries of 𝑦 that are zeros.

Let us denote:

̃𝑦 = 𝑃𝑦 and ̃𝐴 = 𝐴𝑃 𝑇

We have:

(𝑃 𝑇𝑃 + 𝑄𝑇𝑄) 𝑦 = 𝑦 and (𝑃 𝑇𝑃 + 𝑄𝑇𝑄) 𝛽 = 𝛽
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Feasibility of the problem

The problem becomes:

min
𝛽∈ℝ𝑝

𝑓𝑤 (𝑃𝛽, 𝑃𝑦) s.t. 𝐴𝛽 = 𝑠 and 𝑄𝛽 = 0

min
𝛽∈ℝ𝑝

𝑓𝑤 ( ̃𝛽, ̃𝑦) s.t. 𝐴 (𝑃 𝑇𝑃 + 𝑄𝑇𝑄) 𝛽 = 𝑠 𝑄𝛽 = 0

min
𝛽∈ℝ𝑝

𝑓𝑤 ( ̃𝛽, ̃𝑦) s.t. (𝐴𝑃 𝑇) (𝑃𝛽) = 𝑠 𝑄𝛽 = 0

We get the reduced problem:

𝒫 ∶ min
̃𝛽∈ℝ𝑝̃

𝑓𝑤 ( ̃𝛽, ̃𝑦) s.t. ̃𝐴 ̃𝛽 = 𝑠

The problem has a solution if ̃𝐴 = 𝐴𝑃 𝑇 ∈ ℝ𝑘×𝑝̃ has rank 𝑘 or if 𝑠 is in the column space of ̃𝐴.
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Feasibility of the problem

(1 2)

Example:

(1 0
0 1

) (2
1
)

𝑦 =
⎛⎜⎜⎜⎜⎜
⎝

1
0
0
1

⎞⎟⎟⎟⎟⎟
⎠

𝑠 = ⎛⎜⎜
⎝

2
1
1

⎞⎟⎟
⎠

𝐴 = ⎛⎜⎜
⎝

1 0 1 0
0 1 0 1
1 1 0 0

⎞⎟⎟
⎠

𝐴𝑃 𝑇 = ⎛⎜⎜
⎝

1 0 1 0
0 1 0 1
1 1 0 0

⎞⎟⎟
⎠

⎛⎜⎜⎜⎜⎜
⎝

1 0
0 0
0 0
0 1

⎞⎟⎟⎟⎟⎟
⎠

= ⎛⎜⎜
⎝

1 0
0 1
1 0

⎞⎟⎟
⎠

has rank 2

and
⎛⎜⎜
⎝

2
1
1

⎞⎟⎟
⎠

is not in the column space of
⎛⎜⎜
⎝

1 0
0 1
1 0

⎞⎟⎟
⎠

so the problem does not have a solution.
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Aggregated observations

observations
by cause,
by race,
by county

observations
by cause,
all races,
by county

observations
all causes,
all races,
by county

observations
all causes,
by race,
by county

margins
by cause,
all races,
all counties

county

race and ethnicity

cause
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Aggregated observations

min
𝛽∈ℝ𝑝

𝑓𝑤 (𝐵𝛽, 𝑦) s.t. 𝐴𝛽 = 𝑠 with 𝐵 ∈ ℝ𝑞×𝑝 an aggregation matrix

With auxiliary variable 𝜁 ∈ ℝ𝑞 and additional constraint 𝜁 ∶= 𝐵𝛽, the problem becomes:

𝒫 ∶ min
𝛽∈ℝ𝑝,𝜁∈ℝ𝑞

𝑓𝑤 (𝜁, 𝑦) s.t. (𝐴 0
𝐵 −𝐼

) (𝛽
𝜁
) = (𝑠

0
)

ℒ ∶ 𝑓𝑤 (𝜁, 𝑦) + 𝜆𝑇
𝐴 (𝐴𝛽 − 𝑠) + 𝜆𝑇

𝐵 (𝐵𝛽 − 𝜁)
𝒟 ∶ min

𝜆𝐴∈ℝ𝑘,𝜆𝐵∈ℝ𝑞
𝜆𝑇

𝐴𝑠 + 𝑓𝑤∗ (𝜆𝐵, 𝑦) + 𝛿0 (−𝐴𝑇𝜆𝐴 − 𝐵𝑇𝜆𝐵)

OPT ∶ 𝜁∗ = ∇𝑧𝑓𝑤∗ (𝜆∗
𝐵, 𝑦) , (𝐴

𝐵
) 𝛽∗ = ( 𝑠

𝜁∗)
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Aggregated observations
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Variance propagation

Given:

• Σ𝑦 ∈ ℝ𝑝×𝑝, the covariance matrix of the observations vector 𝑦,
• Σ𝑠 ∈ ℝ𝑘×𝑘, the covariance matrix of the margins vector 𝑠 and
• Σ𝑦𝑠 ∈ ℝ𝑝×𝑘, the covariance matrix of 𝑦 and 𝑠,

find:

• Σ𝛽∗ ∈ ℝ𝑝×𝑝, the covariance matrix of the estimated raked values 𝛽∗.
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Variance propagation

The primal problem:

min
𝛽∈ℝ𝑝

max
𝜆∈ℝ𝑘

𝑓𝑤 (𝛽, 𝑦) + 𝜆𝑇 (𝐴𝛽 − 𝑠)

can also be written:

𝐹 (𝛽, 𝜆; 𝑦, 𝑠) = [∇𝛽𝑓𝑤 (𝛽, 𝑦) + 𝐴𝑇𝜆
𝐴𝛽 − 𝑠

] = 0

and has solution:

𝛽∗ = 𝜙 (𝑦, 𝑠) with 𝜙 ∶ ℝ𝑝+𝑘 → ℝ𝑝
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Variance propagation

We get:

Σ𝛽∗ = 𝜙′
𝑦𝑠 (𝑦, 𝑠) Σ𝜙′𝑇

𝑦𝑠 (𝑦, 𝑠)

with:

𝜙′
𝑦𝑠 (𝑦, 𝑠) = ( 𝜕𝛽∗

𝜕𝑦
𝜕𝛽∗

𝜕𝑠 ) =
⎛⎜⎜⎜
⎝

𝜕𝜙1
𝜕𝑦1

(𝑦, 𝑠) … 𝜕𝜙1
𝜕𝑦𝑝

(𝑦, 𝑠) 𝜕𝜙1
𝜕𝑠1

(𝑦, 𝑠) … 𝜕𝜙1
𝜕𝑠𝑘

(𝑦; 𝑠)
⋮ ⋮ ⋮ ⋮

𝜕𝜙𝑝
𝜕𝑦1

(𝑦, 𝑠) … 𝜕𝜙𝑝
𝜕𝑦𝑝

(𝑦, 𝑠) 𝜕𝜙𝑝
𝜕𝑠1

(𝑦, 𝑠) … 𝜕𝜙𝑝
𝜕𝑠𝑘

(𝑦, 𝑠)

⎞⎟⎟⎟
⎠

and:

Σ = ( Σ𝑦 Σ𝑦𝑠
Σ𝑇

𝑦𝑠 Σ𝑠
)
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Variance propagation

Implicit Function Theorem: When differentiating the primal problem 𝐹 (𝑦, 𝑠; 𝜙 (𝑦, 𝑠)) = 0 at the
solution (𝛽∗, 𝜆∗), we get:

[𝐷𝛽,𝜆𝐹 (𝑦, 𝑠; 𝛽∗, 𝜆∗)] [𝐷𝑦,𝑠𝜙 (𝑦, 𝑠)] + [𝐷𝑦,𝑠𝐹 (𝑦, 𝑠; 𝛽∗, 𝜆∗)] = 0

We have:

𝐷𝛽,𝜆𝐹 = (∇2
𝛽𝑓𝑤 (𝛽∗, 𝑦) 𝐴𝑇

𝐴 0𝑘×𝑘
) and 𝐷𝑦,𝑠𝐹 = (∇2

𝛽𝑦𝑓𝑤 (𝛽∗; 𝑦) 0𝑝×𝑘
0𝑘×𝑝 −𝐼𝑘×𝑘

)

thus we can compute:

𝐷𝑦,𝑠𝜙 = (
𝜕𝛽∗

𝜕𝑦
𝜕𝛽∗

𝜕𝑠
𝜕𝜆∗

𝜕𝑦
𝜕𝜆∗

𝜕𝑠
) and 𝜙′

𝑦𝑠 (𝑦, 𝑠) = ( 𝜕𝛽∗

𝜕𝑦
𝜕𝛽∗

𝜕𝑠 )
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Variance propagation

Sensitivity of the variance of the raked value with the observations and margins.
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Variance propagation

observations

margins

X1

X2

• Generate 3 × 5 values following 𝒰𝑛𝑖𝑓 ([2; 3])
• Compute the margins 𝑠1 = 𝛽𝑇

0 1 and
𝑠2 = 𝛽01
→ We get a balanced table 𝛽0

• Add random noise:

𝑦0 = 𝛽0 + 𝒩 (𝜇 = 0, 𝜎 = 0.1)
• Choose covariance matrix Σ:

• Off-diagonal elements equal to 0.01
• Diagonal elements equal to Σ𝑘,𝑘 = 0.1 × 𝑘

for 𝑘 = 1, 15
• The observations 𝑦 follow a MVN distribution

with expectancy 𝑦0 and covariance Σ.
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Variance propagation

Comparison between the variance of the estimator 𝛽∗ obtained with the variance propagation

method or obtained by raking each sample and computing the sample covariance of the results.
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Questions?

PyPI: https://pypi.org/project/raking/

GitHub: https://github.com/ihmeuw-msca/raking
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