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What is raking?
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Two categorical variables X, and X, taking I and
J possible values.

When summing the rows and columns of the
table y, the observations y,; do not add up to the
values in the margins s; and s,.

I
Zyij #Slj J=1J
i=1

J
Zyij F Sy =11
j=1

Q) HME



What is raking?
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After raking, the raked values B;; in the updated
table 5 sum correctly to the values in the margins
s and s,.
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Note: For the problem to have a solution, we need
the margins to be consistent:
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Global health example

* The observation table may be the number of deaths from each cause i and each sub-region ;.
The margins are the number of deaths from all causes for each sub-region j and the number of
deaths from each cause i for the entire region.

* Forsome reason (e.g. errors in data collection, the table is the output of a model that does not

include the constraints on the margins), the partial sums on the observations do not match the
margins.

* We trust more the margins than the observations.
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Raking as an optimization problem

y € RP is the vectorized observation table.

s € R* are the known margins, i.e. the known partial sums on the table.
A € R¥*P summarizes how to compute the partial sums.

£ € RP are the unknown raked values.

w € RP are raking weights chosen by the user.

f* is a separable, derivable, positive, strictly convex function chosen by the user.

P

min f* (By) st AB=s with [ (Biy) = wf;(Biy;)
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Raking as an optimization problem

Examples:

1D problem: A =17

T
2D problem: A = I"T® 17
1;®1I;

Note: We need to ensure that all the constraints are consistent and we trim the redundant
constraints such that rank (A € R**?) = k < p.

Q) HME



Dual formulation

P: minfv(By) st AB=s
BeRP

i [U(By) + AT (AB = s)

D min for (—ATN) 4+ ATs
AERK

As k < p, we decrease the dimension of the problem by using the dual formulation instead of the
primal formulation.

Q) HME



Dual formulation

Solve for \:

s— AV_fo* (—ATA) = 0
Newton’s method: At each iteration, we get A"+ = A" — vy AN with:

AV2fus (—ATAM) ATAN® = 5 — AV, fus (—ATAM)
Final solution: g* = V_ fv* (—AT\*)

Note: A hasrank kand f* is separable so AV f** (—ATX) AT is invertible.
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Comparison with Sinkhorn algorithm

We can solve the 2D problem with Sinkhorn algorithm — We get a comparable computation time
with the dual formulation and Newton’s method.
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Common distance functions

Note

Solved in 1 iteration.

B =yoexp(—y ©ATX)

The raked values have
the same sign as
the initial observations.

Distance f; (83 v;)
x> % (B; — yi)2
Entropic Bilog (2:) -8, +y,
Logit (B; —1,)1og 22 + (h, — B;) log 122

B* — LO(h—y)+hO(y—1)

The raked values stay
between [, and h;

when we rake
prevalence observations.
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Feasibility of the problem

1 (B, y;) is only defined when y, + 0.
Let P € RP*? be a permutation matrix that selects the p < p entries of y that are non-zeros.
Let Q € R?~P)*P be a permutation matrix that selects the p — p entries of y that are zeros.

Let us denote:

j=Py and A= APT

We have:

(PTP+Q"Q)y=y and (PTP+QTQ)p=7
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Feasibility of the problem

The problem becomes:
ggg fY(PB,Py) st Af=s and Q5=0
ggg fo(B.9) st APTP+QTQ)B=s QB=0
gggp} fo(B.9) st (APT)(PB)=s QB=0

We get the reduced problem:

P:  min fv (5, 37) s.t. fIﬁN =5
BERP

The problem has a solution if A = APT ¢ RF*P has rank k or if s is in the column space of A.

Q) HME
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Feasibility of the problem

Example:

APT =

and | 1
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0
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Aggregated observations

race and ethnicity

observations
by cause,

all races,

by county

observations
margins all causes,
by cause, all races,
all races, by county
all counties

observations

all causes,

4 by race,

by county
observations
by cause,
by race,

by county

county
cause

Q) HME

14



Aggregated observations

gn%?n fY(BB,y) st AB=s with B e RYP anaggregation matrix
cRpP

With auxiliary variable ¢ € R? and additional constraint ¢ := B, the problem becomes:

) . w A 0 BY (s
Promin fUGy) st (B —> (g)‘(o)

Lo U (CGy) + AL (AB—s) + MG (BB — ()
D min  ATs+ f (Ag,y) + 6y (—ATA, — BTAR)

A ERE A g€ERY
A S
OPT: ("= V.f" (p.u), (3) B = (c)
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Aggregated observations
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Variance propagation

Given:
° X, € RP*P, the covariance matrix of the observations vector y,
e 3, € R¥** the covariance matrix of the margins vector s and
* %, € RP** the covariance matrix of y and s,

find:
® X4 € RP*P, the covariance matrix of the estimated raked values 3*.

Q) HME
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Variance propagation

The primal problem:

can also be written:

and has solution:

3 w )\T AB —
minmax £ (f,y) + A" (Af — 5)

V,Bfw (5a y) + AT)‘

F(B,A;yvs)=[ AB s

B = ¢ (y,s) with ¢ : RPTF — RP

=0
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Variance propagation

We get:

with:

and:
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s (y8) = (

op"
dy

ap*

Js
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Variance propagation
Implicit Function Theorem: When differentiating the primal problem F'(y, s; ¢ (y, s)) = 0 at the
solution (5%, \*), we get:

[DB,AF(y75;5*7)‘*)] [Dy,s¢(y7s>] + [D%SF(:U,S,B*,)\*)]

We have:
2 fw * AT 2 w *,
Dy \F = Va8t y) and D, . F - V2, FY (B5y) Oy
| 4 O ) OkXp gt J
thus we can compute:
D, =52 ox | andoy, (y,s) = (Ty W)
oy ds
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Variance propagation

Sensitivity of the variance of the raked value with the observations and margins.
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Variance propagation

* Generate 3 x 5 values following Uni f ([2; 3])
X e Compute the margins s, = 11 and
S9 = Fpl
[ T 1] margins — We get a balanced table 3,
¢ Add random noise:
Yo =P8+ N (p=0,0=0.1)
® Choose covariance matrix >:
* Off-diagonal elements equal to 0.01
¢ Diagonal elements equalto ¥, , = 0.1 x k
fork=1,15
observations X1 * The observations y follow a MVN distribution
with expectancy y, and covariance .
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Variance propagation

Comparison between the variance of the estimator 5* obtained with the variance propagation
method or obtained by raking each sample and computing the sample covariance of the results.

Uncertainty propagation method Monte Carlo (N = 100) Monte Carlo (N = 1000) Monte Carlo (N = 10000) Monte Carlo (N = 100000)
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Questions?

PyPI: https://pypi.org/project/raking/
GitHub: https://github.com/ihmeuw-msca/raking
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