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1 Introduction

Low-frequency earthquakes are small magnitude (less
than 2) earthquakes, with reduced amplitudes at fre-
quencies greater than 10 Hz relative to ordinary small
earthquakes. They are often detected in subduction
zones at the plate boundary between a subducting tec-
tonic plate and the overriding plate. They are usually
grouped into families of events, with all the earthquakes
from a given family originating from the same small
patch on the plate interface. They tend to occur in
bursts, that is dozen of earthquakes are detected within a
few hours or days, followed by weeks or months of quiet,
with just a few earthquakes occurring. Long-range de-
pendence is a phenomenon that may arise in the statis-
tical analysis of time series data. It relates to the slow
rate of decay of the statistical dependence between two
points with increasing time interval between the points.
In this paper, I study evidence of long-range dependence
in low-frequency earthquake catalogs. For each family of
events, the dataset contains the timing (and sometimes
the magnitude) of each earthquake associated with this
family. I thus translate the list of earthquake occurrence
times into a discrete time series defined by the number of
earthquakes per unit of time. The time series associated
with two different families are correlated, but the study
of this correlation is beyond the scope of this paper. In
the following, I analyze each earthquake time series inde-
pendently from the others. I use several graphical meth-
ods to estimate either the Hurst parameter H or the
fractional differencing parameter d associated with each
time series.

2 Method

Let us define a time series Xi (i = 1, · · · , N). Long-range
dependence can be defined by imposing conditions on
the autocorrelation ρX,τ or on the spectral density S (f)
(Beran, 1994).

Condition on the autocorrelation Xi is called a process
with long-range dependence if there exists a real number
α ∈ (0, 1) and a constant cρ such that:

lim
τ→∞

ρX,τ
cρτ−α

= 1 (1)

Condition on the spectral density Xi is called a process
with long-range dependence if there exists a real number
α ∈ (0, 1) and a constant cS such that:

lim
f→0

SX (f)

cS |f |−α
= 1 (2)

Following Taqqu and Teverovsky (1998), I use graph-
ical methods to evaluate long-range dependence. Several
estimators are computed and their asymptotic behavior
is used to compute either H or d. When a time se-
ries has long-range dependence, we get 0.5 < H < 1 or
0 < d < 0.5. We define the aggregated series:

X(m) (k) =
1

m

km∑
i=(k−1)m+1

Xi for k = 1, 2, ...,

[
N

m

]
(3)

The estimators used in this study are the first absolute
moment:

AM (m) =
m

N

N
m∑
k=1

∣∣∣X(m) (k)−X
∣∣∣ , (4)

the sample variance:

V̂ arX(m) =
m

N

N
m∑
k=1

(
X(m) (k)−X

)2
, (5)

the average V R(m) over k of the sample variance of
the residuals:

1

m

m∑
t=1

(
Y

(m)
k (t)− a− bt

)2
(6)

of the linear regression of the partial sums of the time
series:

Y
(m)
k (t) =

(k−1)m+t∑
i=(k−1)m+1

Xi, (7)

the R/S statistics:

R/S
(n)
k =

R
(n)
k

S
(n)
k

, k = 0, · · · ,K − 1 (8)

with:



R
(n)
k = max

1≤t≤n

[
Yk (t)− t− 1

n
Yk (n)

]
− min

1≤t≤n

[
Yk (t)− t− 1

n
Yk (n)

]
,

(9)

S
(n)
k the square root of the sample variance of

X (i) , i =
[
N
K

]
k + 1, · · · ,

[
N
K

]
k + n and:

Yk (t) =

[N
K ]k+t∑

i=[N
K ]k+1

Xi, (10)

and the periodogram:

I (f) =
1

2πN

∣∣∣∣∣
N∑
t=1

Xte
itf

∣∣∣∣∣
2

where f is the frequency

(11)
The asymptotic behavior of the five graphical estima-

tors is given in Table 1.

Estimator Asymptotic behavior For
AM (m) mH−1 Large m
V̂ arX(m) m2d−1 Large N/m and m
VR(m) m2d+1 Large m
R/S

(n)
k nd+

1
2 Large n

I (f) |f |−2d ν → 0

Table 1: Asymptotic behavior of the graphical estimators.

To estimate the value of H or d, I then did a linear
regression of the logarithm of the estimator over the log-
arithm of m, n or f . From the value of the slope, I can
then get H (for the absolute moment estimator) or d (for
the four other estimators).

3 Data

I use two low-frequency earthquake catalogs from the
San Andreas Fault (Shelly, 2017) and Mexico (Frank
et al., 2014). They are respectively fifteen and two years
long, and contain 88 and 1120 time series.

4 Results

Figures 1 and 2 show the values of the Hurst param-
eter H and the fractional differencing parameter d for
all the time series of low-frequency earthquakes for the
two catalogs studied in this paper and the five methods
used for the estimation. For finite variance processes,
the fractional differencing parameter d and the Hurst
parameter H are related by H = d + 1

2 . For infinite
variance processes, the fractional differencing parameter
d and the Hurst parameter H are related by H = d+ 1

λ
where λ is a parameter of the distribution of the innova-
tions of a FARIMA process (e.g. the shape of the Pareto
distribution).
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Figure 1: Distribution of the value of the Hurst parameter H
or the fractional differencing parameter d for the 1120 time
series from the catalog of Frank et al. (2014) for the five
methods of estimation. For better comparison between the
distributions of H and d, I plotted H − 0.5 instead of H .
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Figure 2: Same as Figure 1 for the 88 time series from the
catalog of Shelly (2017).

5 Conclusion
The values of H and d obtained with two different graph-
ical methods can be quite different from each other.
However, many low-frequency earthquake time series
seem to show evidence of long-range dependence, with
values of the Hurst parameter between 0.5 and 1 and
values of the fractional differencing parameter between
0 and 0.5. For the San Andreas Fault catalog, the values
of the fractional differencing parameter d can be close
to 0. An additional study is needed to establish a con-
fidence interval for the value of d. Then, we can verify
whether we can reject the hypothesis that d = 0, that is
that there is no long-range dependence in the time series.
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